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ENO filters are developed and compared with classical ENO schemes, TVD filters,
and classical TVD schemes. The amplitude of the numerical dissipation provided by
the filtering pass is computed by means of the artificial compression method (ACM)
switch and itis demonstrated that the use of this sensor improves markedly the quality
of results compared to classical approaches (shock-capturing schemes) in laminar
unsteady flows. On a fully turbulent flow, it is demonstrated that the ACM sensor
is not able to distinguish a turbulent fluctuation from a shock, whereas the sensor
proposed by Ducrost al. [9] makes easily this distinction. 2001 Academic Press
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1. INTRODUCTION

The main difficulty in the application of large-eddy simulation (LES) to compressibl
flows is the control of the numerical dissipation necessary to capture discontinuities that
occur in such flows. In a previous study [1], in the framework of freely decaying turbulenc
it was shown that the numerical dissipation of high-order accurate, shock-capturing sche
masks the effect of the subgrid-scale (SGS) models. In another studgt ladd2] have
noticed that the use of a sixth-order accurate, essentially nonoscillatory (ENO) schem
the entire computational domain leads to a significant damping of the turbulent fluctuatic
A local application of the shock-capturing scheme is then absolutely necessary to minir
the numerical dissipation. In the study of Lekal. [2], this requirement is achieved by
means of the application of the ENO scheme only in the shock-normal direction and ove
few mesh points around the mean shock position which is known in that particular cas
shock/homogeneous turbulence interaction. This approach leads to very satisfying resu
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this configuration for direct numerical simulation (DNS) [2] and for large-eddy simulatio
[3, 4]. Unfortunately, in most cases, the shock position is unknown, and one need:
introduce a sensor to detect possible discontinuities.

Concerning the computations of flows with shocks, methods designed to regulariz
numerical solution are studied since the early attempts of von Neumann and Richtmyel
who used finite difference technique combined with the so-called artificial viscosity. Lat
Engquistet al. [6] have derived a set of explicit nonlinear filters which improve the com
putational efficiency with respect to the previous approach. This method can be ea
implemented into existing codes because the filter step is essentially independent of
basic differencing scheme and is presented as a postprocessing. The advantage corr
to classical shock-capturing schemes, is the low cost of this method since the filtering f
is applied once per time step while a shock-capturing scheme is applied at each sut
of a time advancement procedure. In the same way,eYed [7] show that the dissipa-
tive part of a shock-capturing scheme can be applied after each time step to regularize
solution and acts like a filter. Moreover, to meet the requirement of a local application
the numerical dissipation, they demonstrate that the amplitude of the dissipation car
evaluated with a sensor derived from the artificial compression method (ACM) of Hart
[8]. Unfortunately, the ability of the sensor was not demonstrated on a fully turbulent ca
Another point of minor importance is the parameter dependence on the amplitude of
introduced numerical dissipation.

The numerical tests provided in [7] are restricted to total variation diminishing (TVL
schemes. The possibility of using ENO schemes is mentioned but the developments ar
provided. In this paper, we derived a class of high-order, nonlinear filters based on E
reconstruction, and numerical tests are carried out to evaluate their accuracy with respe
TVD filters. Furthermore, to improve the Jameson sensor which was found unable to
tinguish a shock from a turbulent fluctuation, Ducebsl. [9] have derived a new sensor. In
this study, both ACM and Ducrost al. [9] sensors are compared on fully turbulent test
cases.

The paperis organized as follows. First, the ¥eal. [7] approachis recalled, its extension
to ENO schemes is introduced, and the sensor of Dustrak [9] is presented. In Section
3, ENO filters are compared to classical ENO schemes and to TVD filters in academic
cases such as the transport of an isotropic vortex, the interaction of a density wave wi
shock, and the shock/vortex interaction. In Section 4, ACM and Duetras$ [9] sensors
are compared to two three-dimensional cases: freely decaying homogeneous turbul
and shock/homogeneous turbulence interaction. The general conclusion is presente
Section 5.

2. CHARACTERISTIC BASED FILTERS

2.1. Governing Equations

Governing equations are the unsteady dimensionless compressible Navier—Stokes ¢
tions written in Cartesian coordinates, expressed in 2D for sake of brevity
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wheret is the dimensionless time andandy represent respectively the streamwise anc
the vertical directions. The solution vectdris based on the conservative variablesand
G are the convective fluxes, afid andG, denote the viscous fluxes
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wherep is the densityy, v are thex andy velocity components, anél is the total energy
per unit mass. The stress tensor and the heat flux components are then expressed as

1
oij = —ZF;L—Q) (Sj - §S<k5ij> )
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whereS§; is the strain rate tensor:

1 /0y ou;
Sl‘é<a_x,-+a—xi>'

As usual,T and P denote respectively the temperature and the pressure. They are rele
to the conservative variables by using an equation of state written for a perfect gas

1 2 2
P=(y—1 ['OE_EM} (4)
P
T :yMgE. (5)
P

For sake of simplicity, the study is restricted to ideal gas with constant specific heat re
(y = 1.4), constant viscosity coefficient (= 1 (Tp)), and constant Prandtl numh@g =
0.7). The Reynolds numbeiRe) is based on the reference values of the dengigy, (
velocity (Vo), and length—scale (). The Mach number is defined 8 = Vp/(y RTo) (R

is the gas constant affd is the reference temperature).

2.2. High-Order Nonlinear Filters

If UM denotes the vector of the conservative variables evaluated at the Atnand At
is the time stepl ™V is the vector of the conservative variables after the application
any explicit time advancement scheme. This vector is spatially filtered to give the final st
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U™ttt = £ ™)), The main point is that the time advancement is conducted wif
a nondissipative spatial operator (noted The filtering pass is decomposed as

UMD = F(U™D) = (Ig + AtL ) (G (6)

whereL ; is any dissipative operator ang is the identity.
In this study, the time integration is performed by means of a third-order accurate T
Runge-Kutta method proposed by Shu and Osher [10]:

U®d =u"+ AtLUM
3 1

1
u®@ = s ZU(D + 21At|_(u<1>) @)

- 1 2 2
UMD = Zun+ ZU@ 4 ZAtL(UD).
3 + 3 + 3 (U®)
Note thatl is referred to as “base scheme” and can becihyorder accurate, finite volume
or finite difference nondissipative scheme.
As mentioned by Yeet al. [7], L+ can be the dissipative part of any shock-capturing
scheme and can be expressed as

q * * 1 * * 1 * *
Li(U™Y) = Li(F*,G") = Ax (R — Rty + Ay (G412 = Gl j-ap2] -

®)

whereF?,, , ; andG} ., , are the dissipative numerical fluxes for the filter operator. Fo
a TVD-MUSCL schemel, nuscican be written [7]

1
RN, = 5 R12®itay2. 9)
The element ofb; 1> denoted;&i'+l/2 and the vectow; 1/, are given by

‘Pi|+1/2 = K9i|+1/2|a1'|+1/2 |°‘i|+1/2 (10)

O‘i|+1/2 = Ri_+11/2 (Uiil/z - UiL+1/2) ) (11)

wherea1-'+1/2 (I=1,...,4) are the eigenvalues a1/, is the eigenvector matrix djg
evaluated using a symmetric average betvvdéﬂ/2 and UiL+1/2’ which are the upwind-
biased interpolation of the neighboribly values with the slope limiters imposed (see [11]
for details).

The amplitude of the dissipation applied to each characteristic wave is evaluated v
the discontinuity sens@g‘ﬂ/z. The sensor chosen in [7] is the Harten switch [8] originally
designed for self-adjusting hybrid schemes between Harten’s first-order, ACM scheme
higher order schemes.

Following the simplifications recommended by Yetal. [7], the Harten’s switch is
expressed as

9i|+1/2 =max(6},6,,) . (12)
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with

| |
L el = oyl

. (13)

[ |
loti a0l + Lot _a 5]

The constart is problem dependent and may vary in the ran@8 « < 2. Moreoverg
can take different values for each characteristic wave. For a mixing layer test case incluc
shocks, Yeet al.[7] have used = 0.7 for nonlinear waves and = 0.35 for linear waves.
Here, this case-to-case adaptation is avoided and the vaituis éiked to 1. Note that, with
such a value of, the numerical dissipation introduced hy,,sc; cannot be larger than the
dissipation introduced by a MUSCL scheme without any sensor, 8ineies in the range
[0, 1].

This approach can be extended th-order accurate, ENO schemes. The dissipative pa
of the ENO scheme is obtained by subtractimgth-order accurate, centered scheme to al
rth-order accurate, ENO scheme.

12 = R2®itae2, (14)
with
r—1 m—1
| [ —1 1
Pir12 = Ois12 Z P pR 12 i-rrakep — Z Omyz.pRi2Fi-mitrmzep |+ (15)
p=0 p=0

wheredy , are the reconstruction coefficients (given in [12]) of the ENO procedures &nd
the stencil index selected among theandidate stencils. This stencil, call§d is defined
as

S = (Kigker+1s Xigkor+2, .-, Xigk), k=0,...,r =1 (16)

Note that themth-order accurate, centered scheme is a particular subclass of ENO sche
with the stencil index of the reconstruction coefficien, set tom/2. Obviously, the
order of the centered schenreis even. Whatever the value of > 2, this method allows
us to exhibit the dissipative terms of the truncation errors. Nonetheless, in order to keep
precision of the base scheme, it is necessary to amosey. A larger value ofm does not
improve the formal global precision.

To increase the order of accuracy with respect to ENO filters, WENO filters can
derived:

r-1 r-1 m—1
| | —1 m -1
bit12= Z k|01 Z O pRi1/2Fi—rttkip — Z Umy2,p Ria2 Fimmeatm/2ep
k=0 p=0 p=0

17

The WENO approach consists of performing linear combinations ofplossibler th-order
ENO fluxes. The weightsy adapt themselves to the relative smoothness of the flow c
each candidate stencil in such a way that the stencils which contain a discontinuity
assigned a nearly zero weight. In absence of discontinuity the choice of optimal weig
allow us to increase the order of accuracy of the WENO schemes(@p te 1)th-order of
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accuracy. The procedure used to computedhés described by Jiang and Shu [12]. The
ENO schemes are combined with a Roe solver for all the results presented here.

Another recent procedure to apply the numerical dissipation locally is described
Ducroset al. [9]. These authors have remarked that the Jameson sensor [13] takes I
values not only in presence of shock but also in presence of turbulent fluctuations. In ol
to adapt the Jameson scheme to LES, these authors suggest multiplying the Jameson
(which fixes the amplitude of the second-order dissipation) by another sensor

B (div(u))?
~ (div(u))2 + (rot(u))2’

(18)

whereu denotes the velocity vector. This sensor takes low values where the flow is turbul
(without any shock) and values close to 1 in presence of a shock.
This sensor can be included in our formalism by recasting Eqg. (6) as

UM™Y = (1d + WAtL () (0™D). (19)

The corresponding schemes are referred td gaame of the scheme)-ACM. Note that it
is also possible to approach the formalism described in [9] usindg’thensor without the
ACM one ¢! = 1). The corresponding schemes are referred tb-fisame of the scheme).

3. ASSESSMENT OF ENO AND WENO FILTERS

The ENO and WENO filters are compared to TVD-MUSCL filters on three acaden
cases: the advection of an isentropic vortex [14, 15], the interaction of a moving shock v
a density wave [10] aMa = 3, and the shock/vortex interaction (described in [16]). The
Ducroset al. [9] sensor is not tested here since its use is particularly interesting for ful
turbulent flows. For all the computations presented here, the base scheme is a fourth-
accurate, conservative centered scheme [17]. This scheme, used alone, is referred
C4 and compared with a third-order accurate, ENO scheme [10], a third-order accur
MUSCL scheme [11], a fifth-order accurate, WENO scheme [12], and their counterpe
as characteristic-based filters referred to as, respectively, ENO-ACM, MUSCL-ACM, ¢
WENO-ACM. The formal order of accuracy of ENO—-ACM and MUSCL-ACM is limited
to 3, whereas the order WENO—-ACM is supposed to be the same as the C4 scheme.
MUSCL scheme is used with a minmod limiter function given in [11]. The compressic
factor in the minmod function is set to 4 to limit the numerical dissipation of the MUSC
scheme. The ENO scheme is implemented here with the modification proposed by Shu
who suggests to bias the selection of the stencil toward the most centered one in sm
regions of the flow.

3.1. Advection of an Isentropic Vortex

To measure the order of accuracy of the characteristic-based filters in a realistic flow,
advection of an isentropic vortex in a free stream is simulated. This case is of partict
interest since the solution at any time- ty is the initial solution translated over a distance
U (t — to). This allows a reliable measure of the order of accuracy.
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The mean flow iso,, = 1, Py = 1, Too = 1 (Mg = y¥/?), and (Us, vs0) = (1, 1). An
isentropic vortex is added to this mean flow field. The perturbation values are given by

A R
(8u, 8v) = Ee"<1—52>(—y, X) (20)
2
ST = _ﬂebv(lfsz) (21)
16nyn? ’

where(y, X) = (X — Xo, ¥ — Yo), Xo andyp are the coordinates of the center of the vortex
at the initial time (in this study(xo, Yo) = (5, 5)), ands? = x? + y2. The entire flow is
required to be isentropic, gp= p? with

/(-1

- (r — 2
p=To+sT/r =11 16nyﬂ2 v = D2 sy : (22)

The computational domain is taken as10] x [0, 10] and periodicity is imposed in both
directions. The vortex strengthis set to 5, ang is chosen equal to 1, instead of 0.5 in [14],
to increase the gradients of the solution. The solution is computed\agtiid points in each
direction (withN = 20, 40, 80, 160, and 320). Thg andL errors are computed for all
grids at = 2 asin[15]. Those errors (and the corresponding order of accuracy) are repot
respectively in Tables | and Il for the varialeThe CFL number is setto 0.5 in all cases. It
was verified that the errors reported in the aforementioned tables do not depend significe
on the prescribed time step even at the highest resolution. For example, the C4 scheme
al error equal to B39 10" with N = 320 at CFL=0.05, whereas, at CF& 0.5, thel ;
error is equal to 211 1077 (see Table ). The results can be summarized as follows. The C
and WENO schemes converge toward their expected order of accuracy (respectively 4
5) on the finest grid. The ENO scheme gives results close to their formal order of accur:
whereas the order of accuracy of the MUSCL scheme is slightly larger than 2. Note that
error of the MUSCL scheme doubles with a compression factor of the minmod function
to 1 instead of 4 (as in the presented results). Concerning shock-capturing schemes
as characteristic-based filters, one can notice that the WENO-ACM scheme is fourth-o
accurate for the highest resolutions. This demonstrates, on the one hand, that the ord
accuracy of the base scheme is not affected if a higher order scheme is used as filter,

TABLE |
L, Error for the Variable patt=2

N C4 ENO MUSCL WENO ENO-ACM MUSCL-ACM WENO-ACM
20 L,error 1.08E-2 7.83E-3 9.33E-3 6.12E-3 5.63E-3 6.18E-3 4.61E-3
L, order — — — — — — —
40 L,error 1.13E-3 1.28E-3 2.39E-3 9.39E-4 7.81E-4 1.29E-3 6.11E-4
L, order 3.26 2.61 1.96 2.70 2.85 2.26 2.91
80 L,error 5.78E-5 2.08E-4 5.99E-4 7.07E-5 6.68E-5 2.81E-4 4.58E-4
L, order 4.29 2.62 1.99 3.73 3.55 2.19 3.74
160 L,error 3.79E-6 3.0l1E-5 1.26E-4 2.46E-6 7.84E-6 5.31E-5 2.95E-6
L, order 3.93 2.79 2.25 4.84 3.09 2.40 3.97
320 L,error 241E-7 4.07E-6 2.26E-5 8.52E-8 6.82E-7 8.61E-6 2.13E-7

L, order 3.97 2.89 2.47 4.85 3.52 2.62 3.79
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TABLE 1l
L, Error for the Variable patt=2

191

N Cc4 ENO MUSCL WENO ENO-ACM MUSCL-ACM WENO-ACM
20 L,error 193E-2 245E-2 2.90E-2 1.90E-2 1.77E-2 1.97E-2 1.45E-2
L, order — — — — — — —
40 L,error 2.92E-3 4.09E-3 8.29E-3 3.16E-3 2.47E-3 4.05E-3 2.08E-3
L, order 2.72 2.58 1.81 2.59 2.84 2.28 2.80
80 L,error 190E-4 6.75E-4 2.26E-3 2.64E-4 2.08E-4 1.14E-3 1.48E-4
L, order 3.94 2.60 1.88 3.58 3.57 1.83 3.81
160 L,error 1.23E-5 8.69E-5 5.91E-4 1.10E-5 2.51E-5 3.12E-4 9.44E-6
L, order 3.95 2.96 1.94 4.58 3.05 1.87 3.97
320 L,error 7.84E-7 1.33E-5 1.31E-4 2.93E-7 2.19E-6 6.07E-5 6.85E-7
L, order 3.97 2.71 2.17 5.23 3.52 2.36 3.78

on the other hand, that it is unnecessary to use a filter of higher order than the base sct
The ENO-ACM gives intermediate results (order of accuracy of about 3.5) between
fourth-order accurate, C4 base scheme and the third-order accurate, ENO scheme.
constitutes evidence that the global order of accuracy is not limited in practice to the low
order of accuracy between the base scheme and the filter. This statement is unfortun
not general since the MUSCL-ACM scheme gives nearly the same order of accurac
the MUSCL scheme. However, the values of the error are about two times lower with
MUSCL-ACM scheme than with the MUSCL scheme (wikh= 320).
To complete the previous results, the evolution of the density along theyling is
plotted in Fig. 1. An enlargement is provided near the center of the vortex?). This plot
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FIG. 1. Longitude cut of the density at =7 (N = 80). Ref —, ENO ———, MUSCL
ENO-ACM- - -, MUSCL-ACM -------, WENO-ACM A, C4 @.
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TABLE 11l
CPU Time (in Second per Grid Points and per Time Step) and MFlops Obtained
for the Tested Schemes (NEC SX3\ = 320)

C4 ENO MUSCL WENO  ENO-ACM MUSCL-ACM  WENO-ACM
CPUtimes 9.1E-8 1.8E-6 5.7E-7 1.5E-6 7.9E-7 3.2E-7 7.4E-7
MFlops 3653 1388 3440 3264 1718 2900 3056

confirms the improvement provided by the characteristic-based filters. Note that the E
and ENO-ACM schemes exhibit a slightly antidissipative behavior which has already be
observed in an other study [19]. But, one has to mention that this behavior is observed ¢
with the modification introduced in [18] (bias of the stencil selection). A classical EN
[10] is less precise but always exhibits a dissipative behavior.

The results presented here concerning MUSCL schemes may appear of poor qu.
compared to those presented in [7]. The case of the advection of an isentropic vortex
also carried out by these authors (density profiles are provided for a large time). But, in
case for which the flow does not contain any discontinuity, the valuevedis set to @5,

a value which does not allow the treatment of cases with shocks. Note that witB.05,
the MUSCL—-ACM scheme gives errors six times lower than wite 1 (for N = 320).

Another advantage of using the shock-capturing schemes as filter is the reduction of
computational time. The CPU times, given in second per grid points and per time step,
the computational efficiency, given in MFlops, are reported in Table 11l for each scheme.
course, the performance of an algorithm is developer dependent and these values mu:
be considered as optimal. We just guarantee that the same effort of optimization has t
performed for each scheme. These evaluationsNfes 320) has been performed with a
NEC SX5 vector supercomputer using one processor.

The ratio of the computational time reaches 1.8 between the MUSCL and MUSCL-AC
schemes and about 2.3 between the ENO and WENO schemes and their ACM counterf
For a very CPU time consuming, shock-capturing scheme this ratio could be as high as
number of substeps in the Runge-Kutta scheme i.e., 3 for the Runge-Kutta scheme 1
in this study). The MUSCL scheme is three time less expensive than the WENO sche
but, for a computational cost reduced to a factor of\B=£ 160), the error remains 10
times lower for the WENO scheme than for the MUSCL one (with= 320). The same
conclusion can be drawn (to a slightly lesser extent) by comparing MUSCL-ACM a
WENO-ACM schemes. Despite a lower precision for the ENO scheme than for the WEI
scheme, the ratio precision/computational cost is better for the ENO (and ENO-AC
schemes than for the MUSCL (and MUSCL-ACM) ones. As mentioned by Jiang and S
[12], the ENO scheme is not cost effective (1388 MFlops) mainly because the choice
the stencil involves heavy usage of logical statements. One can remark that the cent
C4 scheme offers the best compromise precision/computational cost but its applicatio
limited to regular solutions of the Navier—Stokes equations.

3.2. Interaction of a Moving Shock with a Density Wave

This test case (introduced in [10]) allows us to check the capability of characterist
based filters in the presence of shock. The one-dimensional Euler equations are solvec
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FIG. 2. Evolution of the density (full computational domain). Initial tifié, final time (reference solu-
tion) —.

domain of length £5, 5]. The Mach number is set to 3 and the initial state is defined as

p = 3.857143 u=2269369 P =1033333 forx < —4 23)

o =140.2sin(5x); u=0; P=1 forx > —4.
The solution is advanced in time up te= 1.8. The initial and final solutions on the full
computational domain are presented in Fig. 2. A reference solution is computed wit
fifth-order accurate, WENO scheme with= 1600 grid points.

This solution, noted REF, is compared with the solution given by the previously ust
shock-capturing schemes with = 200 andN = 400 grid points. The ENO, MUSCL, and
WENO schemes are compared to their counterpart as characteristic-based filters in Fic
4, and 5 respectively. These figures show the evolution of the density in the range [0,
where the solution varies fastly. The global conclusion is that the use of the ACM swi
improves the quality of results for all schemes on both grids. As already mentioned
[10], we observe that ENO schemes behave better than MUSCL schemes for this test
whatever the resolution. The use of MUSCL scheme as filter does not allow this sche
to recover a precision comparable to the ENO schemes (deprived of the ACM switch).
N = 400, the improvement involved by the ACM switch is less sensible for the WEN
scheme, which is already very precise, than for the classical ENO schemid. £&00,
the WENO-ACM scheme is closer to the reference than the ENO-ACM scheme (in par
ular nearx = 1.2), whereas, foN = 400, the ENO-ACM scheme exhibits better results
than the WENO-ACM scheme. This may be due to the slightly antidissipative beh:
ior of the ENO scheme already mentioned in the discussion concerning the previous
case (seein particular near= 1.7, where the ENO scheme exceeds the reference solutiol
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FIG.3. Evolution of the density. Ref —, ENON = 200) ———, ENO—ACM Kl = 200) - -, ENO (N = 400)
[, ENO-ACM (N = 400) A.

FIG.4. Evolution of the density. Ref —, MUSCIN = 200) ———, MUSCL-ACM N = 200)- - -, MUSCL
(N = 400)[], MUSCL-ACM (N = 400)A.
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FIG. 5. Evolution of the density. Ref —, WENQN = 200) ———, WENO-ACMK = 400) - - -, WENO

(N = 400)[J, WENO-ACM (N = 400)A.

The results presented here clearly demonstrate the necessity of the use of the
possible shock-capturing scheme even when the effects of the numerical dissipation
minimized by means of the ACM switch.

3.3. Shock-Vortex Interaction

This test case was originally designed to investigate the capability of the shock-captu
schemes to predict the generation and the transport of acoustic waves during a shock/v
interaction. Comparisons of different types of TVD and ENO schemes are presented in |
using this test case, and ENO schemes were shown to transport acoustic fluctuations |
than TVD schemes.

A squared computational domairL@ x 2L is considered. A stationary plane weak
shock is located afy = 1;the Mach number is 1.1588. The uniform flow is initialized using
the Rankine—Hugoniot relationships. The Reynolds number based on the characterist
the uniform flow and the lengthg is equal to Re=2000. A Taylor vortex defined as

V(r) = Cyr - %27, (24)
with

U] 1
Ci= e, Co= 5 1=((x=%)+(y—Y)2
re 2I’C

is superimposed on the base flow. The initial position of the vortex center4s1/2,
Yo = 1. The presented results have been obtained with a redia®.075 and a maximum
dimensionless velocity. = 0.25. Following these values, the viscous core radiug®s 1
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13

1.25

1.214

FIG. 6. Longitude cut of the density at =1 andt = 0.7. C6 —, ENO ———, MUSCL -----, WENO [],
ENO-ACM- - -, MUSCL-ACM O, WENO-ACMA.

At the inflow boundary, the supersonic mean flow allows us to prescribe all the cons
vative variables. On the outflow boundary, a nonreflecting boundary condition is applit
Computations are performed with 101 uniformly distributed grid points in both direction
A reference solution have been computed [6] with a sixth-order accurate, compact sch
[20] (noted C6) on a very fine uniform grid including 8861501 grid points. The calcu-
lations have been performed using a CFL number equal to 0.5 up to a dimensionless 1
equal to 0.7.

Figure 6 represents the longitudinal evolution of the density on aylisel andt =
0.7 in the post-shock zone @ x < 2). The vortex center is located at= 1.16 and the
perturbation induced by the propagating acoustic waves is visible around.75. The
improvement of the solution is very clear between the ENO scheme and the ENO—-A(
scheme both for the deficit of density in the vortex core and for the acoustic wave. Betw
the MUSCL and MUSCL-ACM schemes, the improvement is less sensible than for the El
schemes both for the vortex and for the acoustic waves. Nevertheless, in the intermec
zone (betweenx = 1.25 andx = 1.6), one can observe that the spurious behavior of th
MUSCL scheme is corrected by the ACM switch. This strange behavior may be relatec
the overcompressive feature of this scheme (with a minmod limiter used with a compres:
factor set equal to 4). Such kind of problem has been previously observed with this sch
in [16]. The WENO scheme gives very accurate results which are only slightly improv
by the adjunction of the ACM switch. We recall that the global order of accuracy of tf
WENO scheme (fifth-order of accuracy) is larger than that of the WENO-ACM schen
(fourth-order of accuracy).

This first set of numerical tests demonstrates clearly the improvement provided by
characteristic based filters whatever the filters used (ENO, WENO, or MUSCL). The ER
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filters are seen to give more accurate results than the TVD—-MUSCL filters. However,
behavior of this approach on a fully turbulent case must be investigated.

4. ASSESSMENT OF DISCONTINUITY SENSORS

The use of the sensor introduced by Ducebsl. [9] is particularly interesting in the
framework of the simulation of a fully turbulent flow (DNS or LES). Two turbulent tes
cases are now considered to evaluate Duetad. [9] and ACM sensors: freely decaying
homogeneous turbulence and shock/homogeneous turbulence interaction. In the first
our goalisto prove the capacity of the presented approach inawide range of initial conditi
previously documented in DNS by Caiial.[21]. The second test case was treated by Le
etal.[2, 22] using DNS and later, with the same parameters, by D@trals[9] using LES
and by Garnieet al.[3, 4] using DNS and LES. In [2—4], the information concerning the
mean position of the shock is used to apply the shock-capturing scheme only on a few
points around this mean position. Here, the objective is to assess the behavior of each s
in a case for which the sensors are supposed to concentrate the numerical dissipation lo
The evaluation is limited to ENO filters because these two test cases have been init
studied with ENO scheme (see [21] and [22]). In this study, the effect of the sensor:
investigated by comparing ENO scheme (applied locally in the second turbulent test ca
ENO-ACM schemeW-ENO-ACM scheme, an@-ENO scheme. Although the goal of
this study is not to demonstrate any improvement over the approach presented in [9], |
test cases have also been treated withhthéameson scheme (which has been used in [€
to compute the shock/turbulence interaction test case). This gives a useful reference.

4.1. Compressible Freely Decaying Homogeneous Turbulence

4.1.1. Description of the test caseCompressible homogeneous turbulence is know
to depend mostly on two parameters: turbulent Mach nunMdeland compressibility
factor x. The turbulent Mach number is defined ks = q/c (whereq = (u/u/)¥2 and
€= (yRTo)Y?). Assuming an Helmholtz decomposition of the velocity field, the com
pressibility factor is defined as the ratio between compressible fluctuating kinetic ene
and total (compressible plus solenoidal) fluctuating kinetic energy. In [21], the objective
to investigate the effect of these two parameters on turbulence initially dominated by fl
tuations of temperature. In this study, we use the same framework to investigate the e
of the compressibility factor on the tested scheme. Indeed, withl, the robustness of
schemes based on the filtering is to be demonstrated. With mediumQ.6) and zero
values of the compressibility ratio, the influence of sensors is supposed to be of relati
less importance in DNS where the numerical dissipation introduced by numerical schel
is expected to be weak.

The parameters of the computations are reported in Table IV. The other physical para
ters and the initial turbulent spectrum are the same as iet@hj21] and the fluctuations of

TABLE IV
Initial Values of M, and x for the Three Test Cases

Case S CaseR Case L

M, 0.3 0.3 0.3
X 0 0.6 1
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FIG.7. Time evolution of the fluctuating temperature (case S). REEENO —, ENO-ACM ———W-ENO—
ACM [, W-ENO- - -, W-Jamesom\.

thermodynamic quantities are initialized with the procedure described in [21] . The boul
ary conditions are periodic in the three directions. As in [21], the time is nondimensionaliz
by the initial eddy, turnover time.

4.1.2. Results. The fluctuating temperature obtained with ENO, ENO-AGMENO-
ACM, ¥-ENO, and¥-Jameson schemes are displayed with the results obtained in [2
(denoted REF) in Figs. 7-9 for the test cases S, R and L respectively. The general agree
between REF and the tested schemes is good considering some small imprecisior
the definition of the ENO scheme used in [21]. The proposed approach does not su
from numerical stability problems in particular in the very demanding case L. For tl
newly introduced scheme, a value of the fluctuating temperature larger than the one
the classical ENO scheme is interpreted as evidence of a lower value of the introdu
numerical dissipation. Note that the evolution of the fluctuating kinetic energy (not show
is highly correlated with the evolution of the fluctuating temperature and that, in the frame
decaying homogeneous turbulence, a lower value of the kinetic energy is often interpre
as the consequence of a lower numerical dissipation.

Following this interpretation, the dissipation is seen to be reduced by both sensors in c:
S and R for all schemes and in case L for schemes based on ENO filters. In the latter
the dissipation introduced by thie-Jameson appears to be larger than the one introduc
by the W-ENO scheme while the results of these two schemes based dn skasor are
very close in the two other cases.

From the results presented in Figs. 7-9, it is not possible to draw clear-cut conclusi
about the relative importance of the dissipation introduced by each sensor. This issue
be addressed in the shock/homogeneous turbulence test case.
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FIG. 8. Time evolution of the fluctuating temperature (case R). REEENO —, ENO-ACM ———\W-ENO—-
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FIG. 10. Description of the configuration.

4.2. Shock/Homogeneous Turbulence Interaction

4.2.1. Description of the configurationThe simulations are performed in a coordinate
system fixed with respect to the mean shock position where the flow is supersonic upstr
and subsonic downstream. The direction of the mean flow is chosen to be normal to
shock wave, aligned with the axis (see Fig. 10).

Simulations are performed in a cubic box of length &hich is completed by a zone
of length 1 with a highly stretched mesh. This zone, combined with Thompson outflc
conditions [23], provides satisfactory nonreflecting behavior. The position of the sho
is prescribed ak = r. At the inflow, a realistic turbulent field obtained by means of &
simulation of freely decaying turbulence is introduced via Taylor’'s hypothesis. At the initi
time, a uniform flow satisfying the Rankine—Hugoniot jump relations is imposed and t
turbulent fluctuations are introduced at the inflow. Statistics are collected by averaging
time and the homogeneous directionandz. Brackets( ) denote this ensemble average
operator. The fluctuation variance of a variables noted(¢’?) = (¢?) — (¢)? andgims =
(L2

The Mach number is set equal to 1.2. The turbulent Mach number is equal to 0.136.
Reynolds number based on the longitudinal Taylor microscalRe, = purmst/u is equal
to 11.9 and the peak wave numbigof the inflow spectrum (of shape (k/ ko)*exp(—2k?/
k3)) is taken equal to 6kf fixes the inflow Taylor microscaleég. = 2)). The parameters
M; and Re are taken at the location immediately upstream of the shock.

The number of grid points in the shock-normal direction is 69 and the SGS model
the Smagorinsky model (see [4] for further details concerning both the influence of 1
resolution in the shock-normal direction and the influence of the SGS model).

In the homogeneous directiong &nd z), periodicity is imposed and 32 grid points
are uniformly distributed Ay = Az), a fourth-order accurate, centered skew-symmetrit
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FIG. 11. Evolution of the streamwise velosity variance. LENO —, ENO-ACM —4~ENO-ACM [,
W-ENO- - -, W-Jamesom\.

scheme is used for the convective flux. This technique of discretization is known to red
the aliasing errors [24]. In this study, the approach (referred to as LENO for Local ENC
developed in [2—4] in which the ENO scheme is applied to a zone of length arbitrarily fixe
is compared to the ENO—ACMY-ENO-ACM, W-ENO, and¥-Jameson approaches.

4.2.2. Results. The evolution of the streamwise (resp. transverse) velocity variance
given in Fig. 11 (resp. Fig. 12) The amplification of the turbulence downstream of t
shock kox > 21) is reproduced by all schemes. As explained in [22], the shock oscillatio
due to the streamwise component of turbulence intensity lead to a local overpredictiol
the turbulence statistics near the shock. The evolution of the statistics in this zone (i
kox = 18) is not to be discussed.-ENO-ACM, WV-ENO, and¥-Jameson schemes give
results very close to the LENO scheme for both component of the velocity. This sugge
that the sensor of Ducracst al. [9] ensures an application of the dissipation as local a
with the fixed zone of the LENO scheme. In contrast, the ENO-ACM scheme exhib
an overdissipative behavior. This shows that the ACM switch is not able to distingui
between a turbulent fluctuation and a shock. The ENO filter is then applied to a significa
proportion of the grid points. The results of tieENO andW¥-Jameson schemes are so
close that one can conclude that in this particular test case the values of the dissipe
introduced by these schemes are quasi-identical.

In order to verify those assumptions concerning the effect of both sensors, the mean ve
of the sensow andW¥ x ! (which multiplies the ENO dissipation) for the-ENO-ACM
scheme are compared to the mean values of the ACM switch for the ENO—ACM sche
and to the mean values of tdesensor for th&/-ENO and thal-Jameson scheme (Fig. 13).



202 GARNIER, SAGAUT, AND DEVILLE

1.2

1.1

0.5

0.4

0.3

<u
UREURE RELURIE LI IEEEE BRI LEREY LN R

10 20 30

k, x
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We recall thav? is the ACM switch associated with the eigenvaiile(namelyu). It was
verified that the behavior @ for| # 1 does not exhibit significant difference with. The
ACM sensor varies smoothly and its value remains close to 0.6, whereas, for all scher
the Ducroset al. [9] sensor takes a value close to 0.8 in the shock zone and less than C
elsewhere. Consequently, the dissipation of the ENO—ACM scheme is applied everywit
with nearly the same intensity. This explains the overdissipative behavior of this sche
observed in Figs. 11 and 12. In contrast, the use of the Duetr@s [9] sensor allows
the application of the numerical dissipation quasi-exclusively in the shock zone. Note t
the size of the ENO zone for the LENO scheme is also reported in Fig. 13.

5. CONCLUSION

Explicit ENO and WENO filters have been developed and compared with classical El
schemes, TVD filters, and classical TVD schemes. First, the precision of the aforementic
schemes was investigated on three test cases: the advection of an isentropic vorte
interaction of a density wave with a shock, and the shock/vortex interaction. The gen
conclusionis that the ACM switch improves the quality of results with respect to the classi
approach, whatever the shock-capturing scheme used as filter. Moreover, the ACM sw
gives better results when it is associated with the ENO schemes than when assoc
with the MUSCL scheme. From a practical point of view, it is demonstrated that it
unnecessary to use a filter of higher order accuracy than the base scheme. Furthert
the ACM switch corrects the spurious behavior of the MUSCL scheme observed in |
propagation of an acoustic wave. In a second part, we have compared the ACM and Du
et al.[9] sensors. The general conclusion is that the ACM sensor is not able to distingu
a turbulent fluctuation from a shock, whereas this goal is easily reached for the Duc
et al.[9] sensor. For applications involving turbulent flows, the use of this sensor is higt
recommended. This allows the control of numerical dissipation in LES of flows includir
shocks. The coupling of the two sensods-ACM—ENO scheme) can also be considerec
for future work.
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